Calculation Policy
EYFS/ Reception
Number

Numerical Patterns

- Have a deep understanding of number to 10 , including the composition of each number
- Subitise (recognise quantities without counting up to 5)
- Automatically recall (without reference to rhymes, counting or other aids) number bonds up to 5 (including subtraction facts)
- Automatically recall some number bonds up to 10 , including double facts

Mathematical Skills

Counting	Comparison	Composition of Number	Shape and Space	Patterns and Mathematical Relationships	Measures
Count verbally beyond 5 . Count verbally beyond 10 Count verbally beyond 20 Accurately count items to 5 with one-to-one correspondence Accurately count items to 10 with one-to-one correspondence Correctly count sounds and actions, as well as objects Show a secure understanding of the 'cardinal principle' (knows the last number reached when counting tells you the total) Subitise up to 3 Subitise up to 5 Show 'finger numbers' up to 5 Link numeral to amounts up to 5 Link numeral to amounts up to 10	Can use 'more than' and 'fewer than' to compare quantities Can compare quantities up to 10 and say whether one is greater than, less than or the same as the other Understand 'one more than/one less than'	Solve real-life maths problems with numbers up to 5 Know the total of a larger set by subitising the groups within it and immediately combining them to find the total (conceptual subitising) Demonstrate an understanding of the composition of numbers to 5 Demonstrate an understanding of the composition of numbers to 10 Automatically recall number bonds to 5 Automatically recall some number bonds to 10 Apply knowledge of number bonds to recall some subtraction facts to 5	Can talk about some common 2D shapes using informal and mathematical language Can talk about some common 3D shapes using informal and mathematical language Can select shapes appropriately for tasks Combine shapes to make new ones Understand that shapes can be decomposed into smaller ones within them Explore shapes and spatial awareness by rotating and manipulating shapes Understand positional language Use positional language Describe and discuss a route	Talk about patterns in the environment using informal language Continue a simple $A B$ pattern Copy and create a simple $A B$ pattern Notice and correct an error in a simple pattern Continue and copy a more complex pattern. $\text { E.g. } A B C, A B B, A B B C$ Create a more complex pattern Notice and correct an error in a more complex pattern Understand the odd and even pattern of numbers up to 10 Explore how quantities can be distributed equally within numbers up to 10 Explore the pattern of double facts to 10	Make direct comparisons between objects relating to size Begin to use units to compare size Make direct comparisons between objects relating to length Begin to use units to compare length Make direct comparisons between objects relating to weight Begin to use units to compare weight Make direct comparisons between objects relating to capacity Begin to use units to compare capacity Can describe a sequence of events

Children in Years 1 and 2 will be given a really solid foundation in the basic building blocks of mental and written arithmetic. Through being taught place value, children will develop an understanding of how numbers work, so that they are confident with 2-digit numbers and beginning to read and say numbers above 100.

Addition and Subtraction: A focus on number bonds, first via practical hands-on experiences and subsequently using memorisation techniques, enables a good grounding in these crucial facts, and ensures that all children leave Year 2 knowing the pairs of numbers which make all the numbers up to 10 at least. Children will also have experienced and been taught pairs to 20. Children's knowledge of number facts enables them to add several 1-digit numbers, and to add/subtract a 1-digit number to/from a 2 -digit number. Another important conceptual tool is the ability to add/subtract 1 or 10 , and to understand which digit changes and why. This understanding is extended to enable children to add and subtract multiples of 10 to and from any 2-digit number. The most important application of this knowledge is the ability to add or subtract any pair of 2-digit numbers by counting on or back in 10s and 1s. Children may extend this to adding by partitioning numbers into 10 s and 1s.

Multiplication and Division: Children will be taught

 to count in $2 s, 3 s, 5 s$ and $10 s$, and will relate this skill to repeated addition. Children will meet and begin to learn the associated $\times 2, \times 3, \times 5$ and $\times 10$ tables. Engaging in a practical way with the concept of repeated addition and the use of arrays enables children to develop a preliminary understanding of multiplication, and asking them to consider how many groups of a given number make a total will introduce them to the idea of division. Children will also be taught to double and halve numbers, and will thus experience scaling up or down as a further aspect of multiplication and division.Fractions: Fractions will be introduced as numbers and as operators, specifically in relation to halves, quarters and thirds.

Year 1

Mental calculation	Written calculation	Default for ALL children
Number bonds ('story' of 5, 6, 7, 8, 9 and 10) Count on in 1s from a given 2-digit number Add two 1-digit numbers Add three 1-digit numbers, spotting doubles or pairs to 10 Count on in 10s from any given 2-digit number Add 10 to any given 2-digit number Use number facts to add 1-digit numbers to 2-digit numbers e.g. Use $4+3$ to work out $24+3,34+3$ Add by putting the larger number first	Number Shapes When adding numbers, children can see how the parts come together making a whole. When subtracting numbers, children can start with the whole and then place one of the parts on top of the whole to see what part is missing. Children can also work systematically to find number bonds.	Pairs with a total of 10 Count in 1s Count in 10s Count on 1 from any given 2-digit number

Number bonds ('story' of 5, 6, 7, 8, 9 and 10) Count back in 1s from a given 2-digit number Subtract one 1-digit number from another Count back in 10s from any given 2-digit number
Subtract 10 from any given 2-digit number Use number facts to subtract 1-digit numbers from 2-digit numbers
e.g. Use 7-2 to work out 27-2, 37-2

Calculation Policy

Pairs with a total of 10
Count back in 1 s from 20 to 0
Count back in 10s from 100 to 0
Count back 1 from any given 2-digit number

Begin to count in $2 s, 5 s$ and $10 s$ Begin to say what three $5 s$ are by counting in $5 s$, or what four $2 s$ are by counting in $2 s$, etc. Double numbers to 10	$5 \times 4=20$ Using $5 \times 4=20$ $4 \times 5=20$ Bead Strings to show the number relationships and patterns $\begin{aligned} & 5 \times 3=15 \\ & 3 \times 5=15 \end{aligned} \quad 15 \div 3=5$ Number Lines $\begin{aligned} & 4 \times 5=20 \\ & 5 \times 4=20 \end{aligned}$	Begin to count in 2s and 10s Double numbers to 5 using fingers
Begin to count in $2 s, 5 s$ and $10 s$ Find half of even numbers to 12 and know it is hard to halve odd numbers Find half of even numbers by sharing Begin to use visual and concrete arrays or 'sets of' to find how many sets of a small number make a larger number	Grouping and sharing There are 20 apples altogether. They are shared equally between 5 bags. How many apples are in each bag? $0 \bigcirc \bigcirc$ $1 \bigcirc \bigcirc$ $1 \bigcirc \bigcirc$ $\bigcirc \bigcirc \bigcirc$	Begin to count in 2 s and 10 s Find half of even numbers by sharing

Year 2

Mental calculation	Written calculation	Default for ALL children
Number bonds - know all the pairs of numbers which make all the numbers to 12 , and pairs with a total of 20 Count on in 1s and 10s from any given 2-digit number Add two or three 1-digit numbers Add a 1-digit number to any 2-digit number using number facts, including bridging multiples of 10 $\begin{aligned} & \text { e.g. } 45+4 \\ & \text { e.g. } 38+7 \end{aligned}$ Add 10 and small multiples of 10 to any given 2-digit number Add any pair of 2-digit numbers	Progressing further, children can add numbers by jumping to the nearest 10 and then jumping to the total. This links to the making 10 method which can also be supported by ten frames. The smaller number is partitioned to support children to make a number bond to 10 and to then add on the remaining part. Children can subtract numbers by firstly jumping to the nearest 10. Again, this can be supported by ten frames so children can see how they partition the smaller number into the two separate jumps. Next Steps: $35+37=72$ Part Whole Model Written Calculation	Know pairs of numbers which make each total up to 10 Add two 1-digit numbers Add a 1-digit number to a 2-digit number by counting on in 1s Add 10 and small multiples of 10 to a 2-digit number by counting on in 10s

Begin to learn the $\times 2, \times 5$ and $\times 10$ tables, seeing

 these as 'lots of'e.g. 5 lots of 2, 6 lots of 2,7 lots of 2

Double numbers up to 20
Begin to double multiples of 5 to 100
Begin to double 2-digit numbers less than 50 with 1s digits of 1,2,3,4 or 5

Count in $2 s, 5 s$ and $10 s$

Using fingers, say where a given number is in the $2 s, 5 s$ or $10 s$ count
e.g. 8 is the fourth number when I count in $2 s$
Relate division to grouping
e.g. How many groups of 5 in 15 ?

Halve numbers to 20
Begin to halve numbers to 40 and multiples of 10 to 100

Using number squares to identify patterns and sequencing.

Using number lines to identify patterns and repeated addition.

Using Concrete apparatus such as numicon, fingers and coins.

09090909

CMOMBNOMS

Sharing concrete materials

Count in $2 s, 5 s$ and $10 s$
Begin to use and understand simple arrays e.g. 2×4 is two lots of four

Double numbers up to 10
Double multiples of 10 to 50

Count in $2 s, 5 s$ and $10 s$

Say how many rows in a given array

> e.g. How many rows of 5 are in an array of 3×5 ?

Halve numbers to 12
Find $1 / 2$ of amounts
Division by grouping and sharing

Calculation Policy

LOWER KEY STAGE 2
In Lower Key Stage 2, children build on the concrete and conceptual understandings they have gained in Key Stage 1 to develop a real mathematical understanding of the four operations, in particular developing arithmetical competence in relation to larger numbers.

Addition and subtraction: Children are taught to use place

 value and number facts to add and subtract numbers mentally and they will develop a range of strategies to enable them to discard the 'counting in 1s' or fingers-based methods of Key Stage 1. In particular, children will learn to add and subtract multiples and near multiples of 10,100 and 1000, and will become fluent in complementary addition as an accurate means of achieving fast and accurate answers to 3-digit subtractions. Standard written methods for adding larger numbers are taught, learned and consolidated, and written column subtraction is also introduced.
Multiplication and division: This key

 stage is also the period during which all the multiplication and division facts are thoroughly memorised, including all facts up to 12×12. Efficient written methods for multiplying or dividing a 2-digit or 3digit number by a 1-digit number are taught, as are mental strategies for multiplication or division with large but 'friendly' numbers, e.g. when dividing by 5 or multiplying by 20.Fractions and decimals: Children will develop their understanding of fractions, learning to reduce a fraction to its simplest form, as well as finding non-unit fractions of amounts and quantities. The concept of a decimal number is introduced and children consolidate a firm understanding of 1-place decimals, multiplying and dividing whole numbers by 10 and 100.

Year 3

	Mental calculation	Written calculation	Default for ALL children
$\begin{gathered} \text { Y3 } \\ + \end{gathered}$	Know pairs with each total to 20 $\text { e.g. } 2+6=8,12+6=18,7+8=15$ Know pairs of multiples of 10 with a total of 100 Add any two 2-digit numbers by counting on in 10 s and 1 s or by using partitioning Add multiples and near multiples of 10 and 100 Perform place-value additions without a struggle $\text { e.g. } 300+8+50=358$ Use place value and number facts to add a 1-digit or 2-digit number to a 3-digit number e.g. $104+56$ is 160 since $104+50=154$ and $6+4=10$	Use expanded column addition to add two or three 3-digit numbers or three 2-digit numbers Begin to use compact column addition to add numbers with 3 digits Begin to add like fractions $\text { e.g. } 3 / 8+1 / 8+1 / 8$ Recognise fractions that add to 1 $\text { e.g. } 1 / 4+3 / 4$ $\text { e.g. } 3 / 5+2 / 5$ Part Whole	Know pairs of numbers which make each total up to 10, and which total 20 Add two 2-digit numbers by counting on in 10 s and 1s e.g. $56+35$ is $56+30$ and then add the 5 Understand simple place-value additions $\text { e.g. } 200+40+5=245$ Use place value to add multiples of 10 or 100

Calculation Policy

	$676+8$ is 684 since $8=4+4$ and $76+4+4=84$ Add pairs of 'friendly' 3-digit numbers $\text { e.g. } 320+450$ Begin to add amounts of money using partitioning	Column Method $\begin{array}{r} 265 \\ +164 \\ \hline 429 \\ \hline 1 \end{array}$	
Y3	Know pairs with each total to 20 $\begin{aligned} & \text { e.g. } 8-2=6 \\ & \text { e.g. } 18-6=12 \\ & \text { e.g. } 15-8=7 \end{aligned}$ Subtract any two 2-digit numbers Perform place-value subtractions without a struggle $\text { e.g. } 536-30=506$ Subtract 2-digit numbers from numbers > 100 by counting up e.g. 143-76 is done by starting at 76 . Then add 4 (80), then add 20 (100), then add 43, making the difference a total of 67 Subtract multiples and near multiples of 10 and 100 Subtract, when appropriate, by counting back or taking away, using place value and number facts Find change from $£ 1, £ 5$ and $£ 10$	Use counting up as an informal written strategy for subtracting pairs of 3-digit numbers $\text { e.g. } 423-357$ Begin to subtract like fractions e.g. $7 / 8-3 / 8$ Part Whole Bar Model Written Column Method $\begin{array}{r} 311 \\ 435 \\ -\quad 273 \\ \hline 162 \end{array}$	Know pairs of numbers which make each total up to 10, and which total 20 Count up to subtract 2-digit numbers $\text { e.g. } 72-47$ Subtract multiples of 5 from 100 by counting up e.g. 100-35 Subtract multiples of 10 and 100
$\begin{gathered} \text { y3 } \\ x \end{gathered}$	Know by heart all the multiplication facts in the $\times 2, \times 3, \times 4, \times 5, \times 8$ and $\times 10$ tables Multiply whole numbers by 10 and 100 Recognise that multiplication is commutative Use place value and number facts in mental	Use partitioning (grid multiplication) to multiply 2-digit and 3-digit numbers by 'friendly' 1-digit numbers	Know by heart the $\times 2, \times 3, \times 5$ and $\times 10$ tables Double given tables facts to get others Double numbers up to 25 and multiples of 5 to 50

Calculation Policy
multiplication

$$
\text { e.g. } 30 \times 5 \text { is } 15 \times 10
$$

Partition teen numbers to multiply by a 1-digit number
e.g. 3×14 as 3×10 and 3×4

Double numbers up to 50
Know by heart all the division facts derived from the $\times 2, \times 3, \times 4, \times 5, \times 8$ and $\times 10$ tables Divide whole numbers by 10 or 100 to give whole number answers
Recognise that division is not commutative Use place value and number facts in mental division
e.g. $84 \div 4$ is half of 42

Divide larger numbers mentally by subtracting the 10th multiple as appropriate, including those with remainders

$$
\begin{aligned}
& \text { e.g. } 57 \div 3 \text { is } 10+9 \text { as } 10 \times 3=30 \text { and } \\
& 9 \times 3=27
\end{aligned}
$$

Halve even numbers to 100 , halve odd numbers to 20

Perform divisions just above the 10th multiple using horizontal or vertical jottings and understanding how to give a remainder as a whole number
Find unit fractions of quantities and begin to find non-unit fractions of quantities

Know by heart the division facts derived from the $\times 2, \times 3, \times 5$ and $\times 10$ tables
Halve even numbers up to 50 and multiples of 10 to 100
Perform divisions within the tables including those with remainders

$$
\text { e.g. } 38 \div 5
$$

Calculation Policy

	$\text { e.g. } 300+8+50+4000=4358$ Add multiples and near multiples of 10,100 and 1000 Add $£ 1,10$ p, 1 p to amounts of money Use place value and number facts to add 1-, 2 -, 3 - and 4-digit numbers where a mental calculation is appropriate e.g. $4004+156$ by knowing that $6+4=10$ and that $4004+150=4154$ so the total is 4160	Add like fractions $\text { e.g. } 3 / 5+4 / 5=7 / 5=1^{2} / 5$ Be confident with fractions that add to 1 and fraction complements to 1 $\text { e.g. }{ }^{2} / 3+=1$ Written Calculation $1,378+2,148=3,526$ Column Method	
$y 4$	Subtract any two 2-digit numbers Know by heart/quickly derive number bonds to 100 Perform place-value subtractions without a struggle $\text { e.g. } 4736-706=4030$ Subtract multiples and near multiples of 10 , 100, 1000, £1 and 10p Subtract multiples of $0 \cdot 1$ Subtract by counting up e.g. 503-368 is done by adding $368+2+30+100+3$ (so we added 135) Subtract, when appropriate, by counting back or taking away, using place value and number facts Subtract £1, 10p, 1p from amounts of money	Use column subtraction for 4-digit numbers Use complementary addition to subtract amounts of money, and for subtractions where the larger number is a near multiple of 1000 or 100 $\text { e.g. } 2002-1865$ Subtract like fractions $\text { e.g. } 4 / 5-3 / 5=1 / 5$ Use fractions that add to 1 to find fraction complements to 1 $\text { e.g. } 1-2 / 3=1 / 3$	Use counting up with confidence to solve most subtractions, including finding complements to multiples of 100 $\begin{aligned} & \text { e.g. } 512-287 \\ & \text { e.g. } 67+=100 \end{aligned}$

Calculation Policy

	Find change from $£ 10, £ 20$ and $£ 50$		
$\begin{gathered} y 4 \\ x \end{gathered}$	Know by heart all the multiplication facts up to 12×12 Recognise factors up to 12 of 2-digit numbers Multiply whole numbers and 1-place decimals by 10, 100, 1000 Multiply multiples of 10,100 and 1000 by 1 digit numbers e.g. 300×6 e.g. 4000×8 Use understanding of place value and number facts in mental multiplication e.g. 36×5 is half of 36×10 e.g. $50 \times 60=3000$ Partition 2-digit numbers to multiply by a 1digit number mentally $\text { e.g. } 4 \times 24 \text { as } 4 \times 20 \text { and } 4 \times 4$ Multiply near multiples by rounding $\text { e.g. } 33 \times 19 \text { as }(33 \times 20)-33$ Find doubles to double 100 and beyond using partitioning Begin to double amounts of money e.g. $£ 35.60$ doubled is $£ 71 \cdot 20$	Use a vertical written method to multiply a 1digit number by a 3-digit number (column method) Use an efficient written method to multiply a 2-digit number by a number between 10 and 20 by using the column method	Know by heart multiplication tables up to 10×10 Multiply whole numbers by 10 and 100 Use the grid method to multiply a 2-digit or a 3 -digit number by a number ≤ 6

Calculation Policy

Know by heart all the division facts up to $144 \div 12$
Divide whole numbers by 10,100 , to give whole number answers or answers with 1 decimal place
Divide multiples of 100 by 1-digit numbers using division facts

$$
\text { e.g. } 3200 \div 8=400
$$

Use place value and number facts in mental division
e.g. $245 \div 20$ is half of $245 \div 10$

Divide larger numbers mentally by subtracting the 10th or 20th multiple as appropriate
e.g. $156 \div 6$ is $20+6$ as $20 \times 6=120$ and $6 \times 6=36$
Find halves of even numbers to 200 and

beyond using partitioning

Begin to halve amounts of money
e.g. half of $£ 52.40$ is $£ 26 \cdot 20$

Use a written method to divide a 2-digit or a 3-digit number by a 1-digit number
Give remainders as whole numbers
Begin to reduce fractions to their simplest forms
Find unit and non-unit fractions of larger amounts

Know by heart all the division facts up to $100 \div 10$
Divide whole numbers by 10 and 100 to give whole number answers or answers with 1 decimal place
Perform divisions just above the 10th multiple using the written layout and understanding how to give a remainder as a whole number Find unit fractions of amounts

Calculation Policy

UPPER KEY STAGE 2

Children move on from dealing mainly with whole numbers to performing arithmetic operations with both decimals and fractions.

Addition and subtraction: Children will consolidate their use of written procedures in adding and subtracting whole numbers with up to 6 digits and also decimal numbers with up to 2 decimal places. Mental strategies for adding and subtracting increasingly large numbers will also be taught. These will draw upon children's robust understanding of place value and knowledge of number facts. Negative numbers will be added and subtracted.

Multiplication and division: Efficient and flexible strategies for mental multiplication and division are taught and practised, so that children can perform appropriate calculations even when the numbers are large, such as 40000×6 or $40000 \div 8$. In addition, it is in Years 5 and 6 that children extend their knowledge and confidence in using written algorithms for multiplication and division.

Fractions, decimals, percentages and ratio: Fractions and decimals are also added, subtracted, divided and multiplied, within the bounds of children's understanding of these more complicated numbers. Children will also calculate simple percentages and ratios.

Year 5

	Mental calculation	Written calculation						Default for ALL children
$\begin{gathered} y 5 \\ + \end{gathered}$	Know number bonds to 1 and to the next whole number Add to the next 10 from a decimal number $\text { e.g. } 13 \cdot 6+6 \cdot 4=20$ Add numbers with 2 significant digits only, using mental strategies $\begin{aligned} & \text { e.g. } 3 \cdot 4+4 \cdot 8 \\ & \text { e.g. } 23000+47000 \end{aligned}$ Add 1- or 2-digit multiples of $10,100,1000$, 10000 and 100000 e.g. $8000+7000$ e.g. $600000+700000$ Add near multiples of $10,100,1000,10000$ and 100000 to other numbers $\text { e.g. } 82472+30004$ Add decimal numbers which are near multiples of 1 or 10 , including money e.g. $6 \cdot 34+1.99$ e.g. $£ 34.59+£ 19.95$	Use column addition to add two or three whole numbers with up to 5 digits Use column addition to add any pair of 2-place decimal numbers, including amounts of money Begin to add related fractions using equivalences $\text { e.g. } 1 / 2+1 / 6=3 / 6+1 / 6$ Choose the most efficient method in any given situation Part Whole Model \& Written Calculation						Add numbers with only 2 digits which are not zeros e.g. $3 \cdot 4+5 \cdot 8$ Derive swiftly and without any difficulty number bonds to 100 Add 'friendly' large numbers using knowledge of place value and number facts Use expanded column addition to add pairs of 4- and 5-digit numbers

Calculation Policy
Use place value and number facts to add two or more 'friendly' numbers, including money and decimals

$$
\begin{aligned}
& \text { e.g. } 3+8+6+4+7 \\
& \text { e.g. } 0.6+0.7+0.4 \\
& \text { e.g. } 2056+44
\end{aligned}
$$

Subtract numbers with 2 significant digits only, using mental strategies

$$
\begin{aligned}
& \text { e.g. 6.2-4.5 } \\
& \text { e.g. } 72000-47000
\end{aligned}
$$

Subtract 1- or 2 -digit multiples of 10, 100,
1000, 10000 and 100000
e.g. 8000-3000

$$
\text { e.g. } 60000-200000
$$

Subtract 1- or 2-digit near multiples of 10 , 100, 1000, 10000 and 100000 from other numbers

$$
\text { e.g. } 82472-30004
$$

Subtract decimal numbers which are near multiples of 1 or 10 , including money
e.g. 6.34-1.99
e.g. $£ 34.59-£ 19.95$

Use counting up subtraction, with knowledge of number bonds to 10,100 or $£ 1$, as a strategy to perform mental subtraction
e.g. $£ 10-£ 3.45$
e.g. 1000-782

Recognise fraction complements to 1 and to the next whole number

$$
\text { e.g. } 12 / 5+3 / 5=2
$$

Know by heart all the multiplication facts up to 12×12
Multiply whole numbers and 1- and 2-place

Use compact or expanded column subtraction to subtract numbers with up to 5 digits Use complementary addition for subtractions where the larger number is a multiple or near multiple of 1000
Use complementary addition for subtractions of decimal numbers with up to 2 places, including amounts of money
Begin to subtract related fractions using equivalences

$$
\text { e.g. } 1 / 2-1 / 6=2 / 6
$$

Choose the most efficient method in any given situation

Part Whole Model \& Written Calculation

Use short multiplication to multiply a 1-digit number by a number with up to 4 digits Use long multiplication to multiply 3-digit and

Derive swiftly and without difficulty number bonds to 100
Use counting up with confidence to solve most subtractions, including finding complements to multiples of 1000

$$
\text { e.g. } 3000-2387
$$

Know multiplication tables to 11×11
Multiply whole numbers and 1-place decimals by 10 , 100 and 1000

Calculation Policy
decimals by 10, 100, 1000, 10000
Use knowledge of factors and multiples in multiplication
e.g. 43×6 is double 43×3

$$
\text { e.g. } 28 \times 50 \text { is } 1 / 2 \text { of } 28 \times 100=1400
$$

Use knowledge of place value and rounding in mental multiplication

$$
\text { e.g. } 67 \times 199 \text { as } 67 \times 200-67
$$

Use doubling and halving as a strategy in mental multiplication
e.g. 58×5 is half of 58×10
e.g. 34×4 is 34 doubled twice

Partition 2-digit numbers, including decimals, to multiply by a 1-digit number mentally
e.g. 6×27 as 6×20 (120) plus $6 \times 7(42)$

$$
\text { e.g. } 6.3 \times 7 \text { as } 6 \times 7(42) \text { plus } 0.3 \times 7 \text { (2.1) }
$$

Double amounts of money by partitioning e.g. $£ 37.45$ doubled is $£ 37$ doubled ($£ 74$)
plus 45 p doubled (90p) giving a total of
£74.90

Know by heart all the division facts up to

$144 \div 12$
Divide whole numbers by $10,100,1000,10000$
to give whole number answers or answers with
1,2 or 3 decimal places
Use doubling and halving as mental division strategies

$$
\text { e.g. } 34 \div 5 \text { is }(34 \div 10) \times 2
$$

Use knowledge of multiples and factors, as well as tests for divisibility, in mental division
e.g. $246 \div 6$ is $123 \div 3$
e.g. We know that 525 divides by 25 and by 3

4-digit numbers by a number between 11 and 20
Choose the most efficient method in any given situation
Find simple percentages of amounts
e.g. $10 \%, 5 \%, 20 \%, 15 \%$ and 50%

Begin to multiply fractions and mixed numbers
by whole numbers ≤ 10

$$
\text { e.g. } 4 \times 2 / 3=8 / 3=22 / 3
$$

Use short division to divide a number with up
4 digits by a number ≤ 12
Give remainders as whole numbers or as fractions
Find non-unit fractions of large amounts
Turn improper fractions into mixed numbers and vice versa
Choose the most efficient method in any given situation

Use knowledge of factors as aids to mental multiplication

$$
\begin{aligned}
& \text { e.g. } 13 \times 6 \text { is double } 13 \times 3 \\
& \text { e.g. } 23 \times 5 \text { is } 1 / 2 \text { of } 23 \times 10
\end{aligned}
$$

Use the grid method to multiply numbers with up to 4 digits by 1 -digit numbers
Use the grid method to multiply 2-digit numbers by 2-digit numbers

Know by heart division facts up to $121 \div 11$ Divide whole numbers by 10,100 or 1000 to give answers with up to 1 decimal place
Use doubling and halving as mental division strategies
Use an efficient written method to divide numbers ≤ 1000 by 1 -digit numbers
Find unit fractions of 2-and 3-digit numbers

Calculation Policy
Halve amounts of money by partitioning e.g. $1 / 2$ of $£ 75 \cdot 40=1 / 2$ of $£ 75$ ($£ 37.50$) plus half of 40 p (20p) which is $£ 37.70$
Divide larger numbers mentally by subtracting the 10th or 100th multiple as appropriate

$$
\begin{aligned}
& \text { e.g. } 96 \div 6 \text { is } 10+6 \text {, as } 10 \times 6=60 \text { and } \\
& 6 \times 6=36 \\
& \text { e.g. } 312 \div 3 \text { is } 100+4 \text { as } 100 \times 3=300 \text { and } \\
& 4 \times 3=12
\end{aligned}
$$

Know tests for divisibility by 2, 3, 4, 5, 6, 9 and 25
Know square numbers and cube numbers
Reduce fractions to their simplest form

Year 6

	Mental calculation	Written calculation	Default for ALL children
$\begin{gathered} \text { Y6 } \\ + \end{gathered}$	Know by heart number bonds to 100 and use these to derive related facts $\text { e.g. } 3.46+0.54$ Derive, quickly and without difficulty, number bonds to 1000 Add small and large whole numbers where the use of place value or number facts makes the calculation do-able mentally $\text { e.g. } 34000+8000$ Add multiples of powers of 10 and near multiples of the same $\text { e.g. } 6345+199$ Add negative numbers in a context such as temperature where the numbers make sense Add two 1-place decimal numbers or two 2-place decimal numbers less than 1	Use column addition to add numbers with up to 5 digits Use column addition to add decimal numbers with up to 3 decimal places Add mixed numbers and fractions with different denominators	Derive, swiftly and without difficulty, number bonds to 100 Use place value and number facts to add 'friendly' large or decimal numbers $\begin{aligned} & \text { e.g. } 3 \cdot 4+6 \cdot 6 \\ & \text { e.g. } 26000+54000 \end{aligned}$ Use column addition to add numbers with up to 4-digits Use column addition to add pairs of 2-place decimal numbers

Calculation Policy

> e.g. $4 \cdot 5+6 \cdot 3$
> e.g. $0 \cdot 74+0.33$

Add positive numbers to negative numbers e.g. Calculate a rise in temperature or continue a sequence beginning with a negative number

Use number bonds to 100 to perform mental subtraction of any pair of integers by complementary addition
e.g. $1000-654$ as $46+300$ in our heads Use number bonds to 1 and 10 to perform mental subtraction of any pair of 1-place or 2-place decimal numbers using complementary addition and including money

$$
\begin{aligned}
& \text { e.g. } 10-3.65 \text { as } 0.35+6 \\
& \text { e.g. } £ 50-£ 34.29 \text { as } 71 p+£ 15
\end{aligned}
$$

Use number facts and place value to perform mental subtraction of large numbers or decimal numbers with up to 2 places

$$
\begin{aligned}
& \text { e.g. } 467900-3005 \\
& \text { e.g. } 4.63-1.02
\end{aligned}
$$

Subtract multiples of powers of 10 and near multiples of the same
Subtract negative numbers in a context such as temperature where the numbers make sense Know by heart all the multiplication facts up to 12×12
Multiply whole numbers and decimals with up to
3 places by 10,100 or 1000

$$
\begin{aligned}
& \text { e.g. } 234 \times 1000=234000 \\
& \text { e.g. } 0.23 \times 1000=230
\end{aligned}
$$

Identify common factors, common multiples and prime numbers and use factors in mental

Use column subtraction to subtract numbers with up to 6 digits
Use complementary addition for subtractions where the larger number is a multiple or near multiple of 1000 or 10000
Use complementary addition for subtractions of decimal numbers with up to 3 places, including money
Subtract mixed numbers and fractions with different denominators

Use number bonds to 100 to perform mental subtraction of numbers up to 1000 by complementary addition
e.g. $1000-654$ as $46+300$ in our heads

Use complementary addition for subtraction of integers up to 10000
e.g. 2504-1878

Use complementary addition for subtractions of 1place decimal numbers and amounts of money

$$
\text { e.g. } £ 7 \cdot 30-£ 3.55
$$

Know by heart all the multiplication facts up to 12×12
Multiply whole numbers and 1 - and 2 -place decimals by 10,100 and 1000
Use an efficient written method to multiply a
1-digit or a teen number by a number with up to 4 digits by partitioning (grid method) Multiply a 1-place decimal number up to 10 by a

Calculation Policy

multiplication
e.g. 326×6 is 652×3 which is 1956

Use place value and number facts in mental multiplication

$$
\begin{aligned}
& \text { e.g. } 4000 \times 6=24000 \\
& \text { e.g. } 0.03 \times 6=0.18
\end{aligned}
$$

Use doubling and halving as mental multiplication strategies, including to multiply by $2,4,8,5,20,50$ and 25

$$
\text { e.g. } 28 \times 25 \text { is a quarter of } 28 \times 100=700
$$

Use rounding in mental multiplication

$$
\text { e.g. } 34 \times 19 \text { as }(34 \times 20)-34
$$

Multiply 1-and 2 -place decimals by numbers up to and including 10 using place value and partitioning

$$
\begin{aligned}
& \text { e.g. } 3.6 \times 4 \text { is } 12+2.4 \\
& \text { e.g. } 2.53 \times 3 \text { is } 6+1.5+0.09
\end{aligned}
$$

Double decimal numbers with up to 2 places using partitioning

$$
\text { e.g. } 36 \cdot 73 \text { doubled is double } 36 \text { (72) plus }
$$ double 0.73 (1.46)

Know by heart all the division facts up to
$144 \div 12$
Divide whole numbers by powers of 10 to give whole number answers or answers with up to 3 decimal places
Identify common factors, common multiples and primes numbers and use factors in mental division

$$
\text { e.g. } 438 \div 6 \text { is } 219 \div 3 \text { which is } 73
$$

Use tests for divisibility to aid mental calculation
Use doubling and halving as mental division
number ≤ 100 using the grid method

Multiply fractions and mixed numbers by whole numbers
Multiply fractions by proper fractions
Use percentages for comparison and calculate simple percentages

\qquad

Calculation Policy

strategies, for example to divide by $2,4,8,5$, 20 and 25

e.g. $628 \div 8$ is halved three times:

$$
314,157,78 \cdot 5
$$

Divide 1- and 2-place decimals by numbers up to and including 10 using place value

$$
\begin{aligned}
& \text { e.g. } 2 \cdot 4 \div 6=0 \cdot 4 \\
& \text { e.g. } 0 \cdot 65 \div 5=0 \cdot 13 \\
& \text { e.g. } £ 6 \cdot 33 \div 3=£ 2 \cdot 11
\end{aligned}
$$

Halve decimal numbers with up to 2 places using partitioning
e.g. Half of 36.86 is half of 36 (18) plus half of 0.86 (0.43)
Know and use equivalence between simple fractions, decimals and percentages, including in different contexts
Recognise a given ratio and reduce a given ratio to its lowest terms

00617	73
$7 3 \longdiv { 4 4 ^ { 4 } 5 0 4 1 }$	146
$-\underbrace{438}$	219
	292
124	365
- 73	438
511	511
	584
	657

Use long division to divide 3-digit and 4-digit numbers by 'friendly' 2-digit numbers

Give remainders as whole numbers or as fractions or as decimals
Divide a 1-place or a 2-place decimal number by a number ≤ 12 using multiples of the divisors Divide proper fractions by whole numbers

